ພາບລວມຂອງການພັດທະນາຂອງຫມໍ້ໄຟ Lithium electrolyte,
ຫມໍ້ໄຟ Lithium electrolyte,
Circular 42/2016/TT-BTTTT ກໍານົດວ່າຫມໍ້ໄຟທີ່ຕິດຕັ້ງຢູ່ໃນໂທລະສັບມືຖື, ແທັບເລັດແລະໂນ໊ດບຸ໊ກແມ່ນບໍ່ໄດ້ຮັບອະນຸຍາດໃຫ້ສົ່ງອອກໄປຫວຽດນາມ, ເວັ້ນເສຍແຕ່ວ່າພວກເຂົາຖືກຮັບຮອງ DoC ນັບຕັ້ງແຕ່ເດືອນຕຸລາ 1,2016. DoC ຍັງຈະຖືກກໍານົດໃຫ້ສະຫນອງໃນເວລາທີ່ສະຫມັກຂໍເອົາການອະນຸມັດປະເພດສໍາລັບຜະລິດຕະພັນສຸດທ້າຍ (ໂທລະສັບມືຖື, ແທັບເລັດແລະໂນ໊ດບຸ໊ກ).
MIC ໄດ້ອອກຖະແຫຼງການໃຫມ່ 04/2018/TT-BTTTT ໃນເດືອນພຶດສະພາ, 2018 ເຊິ່ງກໍານົດວ່າບໍ່ມີບົດລາຍງານ IEC 62133: 2012 ເພີ່ມເຕີມທີ່ອອກໂດຍຫ້ອງທົດລອງທີ່ໄດ້ຮັບການຮັບຮອງຈາກຕ່າງປະເທດແມ່ນໄດ້ຮັບການຍອມຮັບໃນເດືອນກໍລະກົດ 1, 2018. ການທົດສອບໃນທ້ອງຖິ່ນແມ່ນມີຄວາມຈໍາເປັນໃນຂະນະທີ່ສະຫມັກຂໍໃບຢັ້ງຢືນ ADoC.
QCVN101:2016/BTT (ອ້າງອີງເຖິງ IEC 62133:2012)
ລັດຖະບານຫວຽດນາມ ໄດ້ອອກດຳລັດສະບັບເລກທີ 74/2018/ND-CP ສະບັບວັນທີ 15 ພຶດສະພາ 2018 ເພື່ອກຳນົດວ່າ ສິນຄ້າ 2 ປະເພດທີ່ນໍາເຂົ້າມາຫວຽດນາມ ແມ່ນຂຶ້ນກັບໃບສະໝັກ PQIR (ທະບຽນກວດກາຄຸນນະພາບຜະລິດຕະພັນ) ເມື່ອນໍາເຂົ້າມາຫວຽດນາມ.
ອີງຕາມກົດໝາຍສະບັບນີ້, ກະຊວງຖະແຫຼງຂ່າວ ແລະ ສື່ສານ ຫວຽດນາມ ໄດ້ອອກເອກະສານທາງການ 2305/BTTTT-CVT ໃນວັນທີ 1 ກໍລະກົດ 2018, ໄດ້ກຳນົດວ່າບັນດາຜະລິດຕະພັນພາຍໃຕ້ການຄວບຄຸມຂອງຕົນ (ລວມທັງແບັດເຕີຣີ) ຕ້ອງນຳເຂົ້າ PQIR. ເຂົ້າຫວຽດນາມ. SDoC ຈະຖືກສົ່ງເພື່ອເຮັດສໍາເລັດຂະບວນການເກັບພາສີ. ວັນທີ່ມີຜົນບັງຄັບໃຊ້ຢ່າງເປັນທາງການຂອງລະບຽບການສະບັບນີ້ແມ່ນວັນທີ 10 ສິງຫາ 2018. PQIR ແມ່ນໃຊ້ໄດ້ກັບການນຳເຂົ້າດຽວເຂົ້າຫວຽດນາມ, ນັ້ນແມ່ນທຸກຄັ້ງທີ່ຜູ້ນຳເຂົ້ານຳເຂົ້າສິນຄ້າຕ້ອງຍື່ນຄຳຮ້ອງຂໍ PQIR (batch inspection) + SDoC.
ຢ່າງໃດກໍ່ຕາມ, ສໍາລັບຜູ້ນໍາເຂົ້າທີ່ຮີບດ່ວນທີ່ຈະນໍາເຂົ້າສິນຄ້າທີ່ບໍ່ມີ SDOC, VNTA ຈະກວດສອບ PQIR ຊົ່ວຄາວແລະສ້າງຄວາມສະດວກໃນການເກັບພາສີ. ແຕ່ຜູ້ນຳເຂົ້າຕ້ອງສົ່ງ SDoC ໃຫ້ VNTA ເພື່ອໃຫ້ສຳເລັດຂະບວນການເກັບກູ້ພາສີທັງໝົດພາຍໃນ 15 ວັນເຮັດວຽກພາຍຫຼັງການເກັບພາສີ. (VNTA ຈະບໍ່ອອກ ADOC ສະບັບກ່ອນໜ້າ ເຊິ່ງໃຊ້ໄດ້ກັບຜູ້ຜະລິດທ້ອງຖິ່ນຂອງຫວຽດນາມ ເທົ່ານັ້ນ)
● ຜູ້ແບ່ງປັນຂໍ້ມູນຫຼ້າສຸດ
● ຜູ້ຮ່ວມກໍ່ຕັ້ງຂອງຫ້ອງທົດລອງການທົດສອບຫມໍ້ໄຟ Quacert
ດັ່ງນັ້ນ, MCM ຈຶ່ງກາຍເປັນຕົວແທນດຽວຂອງຫ້ອງທົດລອງນີ້ໃນຈີນແຜ່ນດິນໃຫຍ່, ຮົງກົງ, ມາກາວ ແລະໄຕ້ຫວັນ.
● ການບໍລິການຕົວແທນທີ່ຢຸດດຽວ
MCM, ເປັນອົງການຫນຶ່ງຈຸດດຽວທີ່ເຫມາະສົມ, ສະຫນອງການທົດສອບ, ການຢັ້ງຢືນແລະການບໍລິການຕົວແທນສໍາລັບລູກຄ້າ.
ໃນປີ 1800, ນັກຟິສິກອິຕາລີ A. Volta ໄດ້ສ້າງ pile voltaic, ເຊິ່ງໄດ້ເປີດການເລີ່ມຕົ້ນຂອງຫມໍ້ໄຟພາກປະຕິບັດແລະໄດ້ອະທິບາຍຄັ້ງທໍາອິດຄວາມສໍາຄັນຂອງ electrolyte ໃນອຸປະກອນການເກັບຮັກສາພະລັງງານ electrochemical. electrolyte ສາມາດເຫັນໄດ້ວ່າເປັນຊັ້ນ insulating ເອເລັກໂຕຣນິກແລະ ion-conducting ໃນຮູບແບບຂອງແຫຼວຫຼືແຂງ, inserted ລະຫວ່າງ electrodes ລົບແລະບວກ. ໃນປັດຈຸບັນ, electrolyte ກ້າວຫນ້າທາງດ້ານຫຼາຍທີ່ສຸດແມ່ນເຮັດໂດຍການລະລາຍຂອງເກືອ lithium ແຂງ (ເຊັ່ນ LiPF6) ໃນສານລະລາຍຄາບອນອິນຊີທີ່ບໍ່ມີນ້ໍາ (ເຊັ່ນ: EC ແລະ DMC). ອີງຕາມຮູບແບບແລະການອອກແບບຂອງເຊນທົ່ວໄປ, ໂດຍທົ່ວໄປແລ້ວ electrolyte ກວມເອົາ 8% ຫາ 15% ຂອງນ້ໍາຫນັກຂອງເຊນ. ຍິ່ງໄປກວ່ານັ້ນ, ການຕິດໄຟຂອງມັນ ແລະອຸນຫະພູມການເຮັດວຽກທີ່ດີທີ່ສຸດຂອງ -10 ° C ຫາ 60 ° C ຢ່າງຫຼວງຫຼາຍຂັດຂວາງການປັບປຸງຄວາມຫນາແຫນ້ນຂອງພະລັງງານຫມໍ້ໄຟແລະຄວາມປອດໄພຕື່ມອີກ. ດັ່ງນັ້ນ, ການສ້າງຮູບແບບ electrolyte ທີ່ມີນະວັດກໍາໄດ້ຖືກພິຈາລະນາວ່າເປັນຕົວຊ່ວຍສໍາຄັນສໍາລັບການພັດທະນາແບດເຕີລີ່ລຸ້ນຕໍ່ໄປ. ນັກຄົ້ນຄວ້າຍັງເຮັດວຽກເພື່ອພັດທະນາລະບົບ electrolyte ທີ່ແຕກຕ່າງກັນ. ສໍາລັບຕົວຢ່າງ, ການນໍາໃຊ້ສານລະລາຍ fluorinated ທີ່ສາມາດບັນລຸການວົງຈອນໂລຫະ lithium ປະສິດທິພາບ, electrolytes ແຂງອິນຊີຫຼືອະນົງຄະທາດທີ່ມີປະໂຫຍດຕໍ່ອຸດສາຫະກໍາຍານພາຫະນະແລະ "ຫມໍ້ໄຟຂອງລັດແຂງ" (SSB). ເຫດຜົນຕົ້ນຕໍແມ່ນວ່າຖ້າຫາກວ່າ electrolyte ແຂງທົດແທນ electrolyte ຂອງແຫຼວຕົ້ນສະບັບແລະ diaphragm, ຄວາມປອດໄພ, ຄວາມຫນາແຫນ້ນຂອງພະລັງງານດຽວແລະຊີວິດຂອງຫມໍ້ໄຟສາມາດໄດ້ຮັບການປັບປຸງຢ່າງຫຼວງຫຼາຍ. ຕໍ່ໄປ, ພວກເຮົາສ່ວນຫຼາຍແມ່ນສະຫຼຸບຄວາມຄືບຫນ້າຂອງການຄົ້ນຄວ້າຂອງ electrolytes ແຂງກັບວັດສະດຸທີ່ແຕກຕ່າງກັນ. electrolytes ແຂງບໍ່ເປັນອິນຊີໄດ້ຖືກນໍາໃຊ້ໃນອຸປະກອນການເກັບຮັກສາພະລັງງານໄຟຟ້າເຄມີການຄ້າ, ເຊັ່ນ: ຫມໍ້ໄຟ rechargeable ອຸນຫະພູມສູງບາງ Na-S, Na-NiCl2 ຫມໍ້ໄຟແລະຫມໍ້ໄຟ Li-I2 ປະຖົມ. . ກັບຄືນໄປໃນປີ 2019, Hitachi Zosen (ຍີ່ປຸ່ນ) ໄດ້ສະແດງໃຫ້ເຫັນຫມໍ້ໄຟ pouch-state ທັງຫມົດແຂງຂອງ 140 mAh ເພື່ອນໍາໃຊ້ໃນອາວະກາດແລະການທົດສອບໃນສະຖານີອາວະກາດສາກົນ (ISS). ແບດເຕີຣີ້ນີ້ແມ່ນປະກອບດ້ວຍ electrolyte sulfide ແລະອົງປະກອບຫມໍ້ໄຟອື່ນໆທີ່ບໍ່ໄດ້ເປີດເຜີຍ, ສາມາດດໍາເນີນການລະຫວ່າງ -40 ° C ຫາ 100 ° C. ໃນປີ 2021 ບໍລິສັດກໍາລັງຈະນໍາສະເຫນີແບດເຕີຣີ້ແຂງທີ່ມີຄວາມຈຸສູງກວ່າ 1,000 mAh. Hitachi Zosen ເຫັນຄວາມຕ້ອງການຫມໍ້ໄຟແຂງສໍາລັບສະພາບແວດລ້ອມທີ່ຮຸນແຮງເຊັ່ນ: ພື້ນທີ່ແລະອຸປະກອນອຸດສາຫະກໍາທີ່ເຮັດວຽກຢູ່ໃນສະພາບແວດລ້ອມປົກກະຕິ. ບໍລິສັດວາງແຜນທີ່ຈະເພີ່ມຄວາມອາດສາມາດຂອງຫມໍ້ໄຟສອງເທົ່າໃນປີ 2025. ແຕ່ມາຮອດປະຈຸບັນ, ບໍ່ມີຜະລິດຕະພັນຫມໍ້ໄຟທັງຫມົດທີ່ມີນ້ໍາແຂງທີ່ສາມາດຖືກນໍາໃຊ້ໃນຍານພາຫະນະໄຟຟ້າ.